Emission inventories for priority substances at catchment levels: Solving the PAH source conundrum with an array of in-stream tools

T. Gallé Michael Bayerle, Denis Pittois, Andreas Krein

Luxembourg Institue of Science and Technology

Contact: tom.galle@list.lu

BAD CHEMICAL STATUS PAH EQS exceedance most common reason

- All surveillance sites in Luxembourg exceed EQS for high-molecular weight PAH
- Same trends in the neighboring regions (Rhine-Mosel Commission)
- PAH often considered as ubiquitous with important atmospheric immission
- Fatalistic attitude upon improving the situation (little concrete measures in RBMP)
- · Scarce efforts to investigate spatial differentitation and sources more thoroughly

PAH SOURCES AND DYNAMICS What the literature says

- Exports from catchments > current atmospheric deposition (urban areas)
- Street deposits major source
- Soils often secondary source
- Accumulation in soils in vicinity of traffic
- Building up of stocks in sewers (first flushs)
- Role of combustion derived carbonaceous particles
- Contaminated industrial sites (historical)

EMISSION INVENTORIES

One scheme for all compounds?

TIER	BUILDING BLOCKS	EXPECTED OUTPUT	RESULTS FOR THE INVENTORY
STEP 1: ASSESSMEN	T OF RELEVANCE		
	Information sources identified in Art. 5 of EQS directive, see section I.1	Decision of relevance	List of relevant and less relevant substances
STEP 2: APPROACHE	S FOR RELEVANT SUBS	TANCES	
1. Point source information	Data on point sourcesEmissions factors	Availability of dataQuality of dataIdentification of gaps	Point source emissionsListing of identified data gaps
2. Riverine load approach	add: • River concentration • Data on discharge • In stream processes	 Riverine load Trend information Proportion of diffuse and point sources Identification of gaps 	 Rough estimation of total lumped diffuse emissions Verification data for pathway and source orientated approaches Listing of identified data gaps
3. Pathway orientated approach	add: • Land use data • Data on hydrology • Statistical data •	 Quantification and proportion of pathways Identification of hotspots Information on adequacy of POM 	 Pathway specific emissions Additional spatial information on emissions
4. Source orientated approach	add: Production and use data e.g. from REACH SFA Substance specific emission factors 	 Quantification of primary sources Complete overview about substance cycle Information on adequacy of POM 	 Source specific emissions Total emissions to environment and proportion to surface waters

Is this adapted to secondary pollutants with diffuse sources and a strong affinity for solids?

SUBSTANCE FLOW ANALYSIS

Regionalized emission balances

- Substance flow analysis in different catchment
- Establishment of Q-C relationships
- Calculation of catchment loads
- Characterization of pollution level in different hydrological situations
- Contribution of WWTPs and urban runoff

SUSPENDED MATTER POLLUTION Source discrimination

- Solid contamination levels allow for objective comparison in different hydrological situations and catchments (SPM as main carrier)
- High levels of SPM indicate strong catchment wide erosion and background levels of (alluvial) contamination

CATCHMENT BALANCES Yearly variability - uncertainties

Yearly average

Yearly average

7

concentration PAH [µg/L]

concentration SPM [mg/L]

Yearly loads	are governed by SPM yield – read: hydrological ever	nts

2.05

160

0.58

33

0.58

37

1.32

95

SPM pollution levels is the more objective measure

CONTRIBUTION BY URBAN AREAS WWTPs vs runoff pollution

- Contribution of WWTPs: medians of measurement campaigns
- Contribution of surface runoff
 - Combined sewers

Difference between effective precipitation on impervious surfaces and discharge of WWTPs

- Separative sewers: Effective precipitation
- Median concentrations: measurements/literature

CONTRIBUTION PATTERNS Runoff as the main source?

9

- The contribution of WWTPs and urban runoff is much smaller for PAH than for metals
- The contribution is largely dependent on the hydrological season (wet year vs. dry year)

Can we depict fast urban runoff contributions in chemographs?

FLOOD EVENTS

Source mobilisation and transport dynamics

- Follow-up project on urban runoff through instream balances
- 3 triggerd autosamplers in a longitudinal profile from industrial region to strongly urbanized segments
- Event based balancing and peak analysis in flood waves

EVENT MEAN CONCENTRATIONS

Fingerprinitng the sources

11

- EMC for Copper and PAH show higher solid contamination in small events (Cu > PAH)
- Small events have higher contributions of first-flushes vs catchment erosion

200

150

100

50

Livange

Hesperange

Pfaffenthal

EMC Cu solid [mg/kg]

SPATIAL VARIABILITY Limited outreach of PAH pollution

40

30

20

10

Livange

lesperange

PAH [mg/kg]

16

EMC Σ

0

PAH pollution and Copper pollution behave differently in longitudinal profile

Sources seem to be diverse and variably mobilisable

MASS FLOW COMPONENTS Deconvoluting flood waves

- First we identify and fit SPM loads (turbidity signal)
- Then we allocate a pollution to each SPM source

MASS FLOW COMPONENTS Deconvoluting flood waves

	Event Ioad PAH [kg]	First Flush Ioad fraction [%]	FF conc. [mg/kg]	BG conc. [mg/kg]
Livange	3.36	29 %	16 (27)	25
Hesperange	3.61	22 %	33 (29)	18
Pfaffenthal	6.85	37%	48 (13)	21

- First flush contributions can be below background contamination
- Contamination levels of first flush vs. background are variable downstream

9

LARGE SCALE PICTURE **Catchment properties and PAH pollution**

Sampling site

- Country wide sampling with sediment nets at low-flow
- Large variety of catchment properties (land use)

Sampling locations and catchments

LOW FLOW PATTERN The random nature of PAH sources

- Metals correlate well with impermeable surfaces while PAH do not at all
- Alluvial contaminated sites as probable sources for PAH

TRACKING THE SOURCES How small scale is the problem?

- Combined passive sampler campaign (SPM nets & Empore disks for dissolved fraction)
- Longitudinal stretch of 4 km length with 3 monitored sites
- Different pollution sources
 - Urban + historical background (Livange)
 - Gas station (Berchem)
 - WWTP with known PAH pollution (Roeser)

SPATIAL DISCRIMINATION Sources reveal under low flow

- Differences in SPM contamination can only be observed prior to the floodwave
- Empore disk TWA show highest input by dissolved PAH downstream of the fresh sources (WWTP, Gas station)

FAR FROM EQUILIBRIUM Apparent log K_{oc} higher than literature values

- Apparent log K_{oc} calculated with SPM and Empore disks are 3 orders of magnitude higher than expected from literature regressions
- Differences between the 3 sites are < 1 log unit and largest under low-flow conditions

SOURCE DISCRIMINATION The potential of log K_{oc} to reveal aged contamination

- The south of Luxembourg is a historical steel working area
- SPM contamination and log K_{oc} are decreasing downstream of the source

IMPLICATIONS FOR MOINTORING Relevance of log K_{oc} for whole water extraction?

 With field K_{oc} up to 3 orders higher than expected suspended matter concentration impacts EQS-evaluation heavily

Are these EQS relevant under these conditions (bioavailability)?

21

SUMMARY & CONCLUSIONS

- PAH EQS exceedences are one of the main reasons of chemical status failure
- Several investigations with different approaches suggest that urban runoff is not the main source of PAH in Luxembourgish catchments
- Instead, suspended sediment profiles under low-flow suggest very localized contaminations
- The outreach of these pollutions is very limited in longitudinal profiles (-> erratic conclusions on upstream situation)
- Apparent log K_{oc} of suspended sediments are 3 orders of magnitude higher than literature values (implications for whole water sampling, SPM impact)
- Log K_{oc} have the potential to discern fresh from old PAH pollution sources
- Longitudinal profiles at low flow with combined SPM and Empore disk sampling can be used to pinpoint pollution sources